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SYNOPSIS 

Shrinkage force measurements on drawn polyethylene terephthalate fibres have been eval- 
uated in terms of the elastic behaviour of a molecular network. It is shown that for low 
network deformations the classical theory of Kuhn and Griin describes the stress-optical 
behaviour very well. For high deformations, the recent theory of Edwards and Vilgis has 
been found to give a satisfactory description of the data. It also provides some tentative 
insights into the structure of the spun yarns. 

INTRODUCTION 

This article concerns the development of shrinkage 
force and free shrinkage in PET fibres when raised 
above their glass transition temperature. It relates 
to a separate publication' describing the drawing 
behaviour and properties of a wide range of fibres 
prepared by melt spinning over a wide range of wind- 
up speeds ( WUS) . A particular feature of this latter 
publication is the use of the network draw ratio, 
obtained by matching the stress-strain curves of the 
drawn yarns. 

The earliest investigation of the stress-optical 
properties of PET was conducted by Pinnock and 
Ward,2 who found the free shrinkage of amorphous 
as-spun PET fibres to relate to both the birefrin- 
gence and the peak shrinkage stress. The stress-op- 
tical behaviour was quantitatively analysed in terms 
of the classical Kuhn and Grun theory3 for a 
stretched rubber network. A particular feature of 
this work was the use of free shrinkage as a measure 
of overall network extension in the low WUS amor- 
phous yarns. It was difficult to obtain an accurate 
measure of overall network extension unless the free 
shrinkage measurements were carried out over a 
range of temperatures. 

It has since become clear that crystallinity will 
develop, either as a result of increasing WUS or hot 
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draw ratio, and lead to a fall in shrinkage at higher 
orientation. Thus, free shrinkage can no longer re- 
late to overall network extension. 

The difficulty in relating free shrinkage to the 
network extension leads to the use of the geometric 
hot draw ratio resulting from hot drawing in the 
analysis of shrinkage force data by Rietsch et al.4 
The retractive force was found to relate to draw 
ratio according to the Gaussian theory [see eq. ( 1) 
below] for X 5 1.7, i.e., before crystallisation occurs 
in drawing. 

Bhatt and Bell5 used the Treloar3 modification 
of the Kuhn-Griin theory to model the full extension 
range. If the number of statistical segments is con- 
stant (as is conventional), this equation does not 
appear to model the development of amorphous ori- 
entation with extension very successfully. 

In the present investigation, the geometric hot 
draw ratio does not relate to the network exten- 
sion because of the different initial extensions im- 
posed in the spinline. However, the birefringence 
correlates well with the total network draw ratio Xnet 
up to A,,,, of 3.5. As Xnet rises above this value, dif- 
ferences develop between the pin-drawn yarns, 
which are dependent on feedstock WUS. However, 
in view of the good agreement between birefringence 
and Xnet at low and intermediate strains, the network 
draw ratio has been combined with peak shrinkage 
force measurements to define the stress-extension 
ratio relationship. In this way, the shrinkage force 
results for oriented semi-crystalline PET yarns can 
be analysed in the situation where crystallisation 
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prevents any accurate measure of the deformation 
to be obtained from shrinkage measurements. 

have also based the in- 
terpretation on classical rubber network elasticity 
theory, which does not seem appropriate for crys- 
talline materials. The recent sliplink theory of Ed- 
wards and Vilgis' aims to describe the situation 
where there are both permanent crosslinks (in this 
case the crystallites ) and physical entanglements 
(the sliplinks). As it also models the whole of the 
rubberlike stress-strain curve, it was considered ap- 
propriate to examine the application of this theory 
to PET fibres. 

The previous 

THEORY 

Classical Rubber Elasticity 

Classical rubber elasticity theory can be used to re- 
late the peak shrinkage stress in an amorphous fibre 
to the extension ratio X 

The work of Pinnock and Ward2 replaces the X 
term in the above equations by (1 - S)-' where S 
is the free shrinkage. Thus, eq. ( 3 )  can be rewritten 
as 

27r ( n 2  + 2 ) 2  
45 n An = - N(a1- a 2 1  

x [(l- s)-2 - (1 - S ) ] .  (5)  

Whilst the peak shrinkage stress is relatively con- 
stant over a range of temperature, 2,477 the free 
shrinkage is highly sensitive.2 

Mooney-Rivlin Equation 

As the draw ratio of the originally amorphous poly- 
mer rises above 1.5, the experimental results fall 
below that predicted by eq. ( 1) .3,4 This feature is 
known as strain-softening and can be modelled by 
the Mooney-Rivlin e q u a t i ~ n ~ ' ~ :  

s = ( A  - A - 2 ) ( c l  + C,/A), (6) 

where t is the peak shrinkage force per unit deformed 
cross-sectional area, k the Boltzmann constant, T 
the absolute temperature, and N the classical en- 
tanglement density. 

Equation ( 1)  can be modified to give the molec- 
ular weight between network junction points M,, 

where p is the density and R the gas constant. 
Kuhn and Griin obtained the following expression 

for the optical anisotropy of the Gaussian network3: 

27r ( n 2 + 2 ) 2  
45 n 

A n  = - N(a1- a2) ( A 2  - X-'), ( 3 )  

where n is the mean refractive index (found to be 
1.58 for PET) and (a1 - a2)  the polarizability of 
the random link. 

Combining eqs. ( 1 ) and ( 3 ) , a stress-optical coef- 
ficient can be found 

An 27r(n2+ 2 ) 2  c=-=-  (a1 - a 2 1 1  ( 4 )  t 45 nkT 

which is independent of the extension. The polar- 
azability difference of the random link can therefore 
be found directly from the stress-optical behaviour. 

where s is the nominal shrinkage stress, and is re- 
lated to the true shrinkage stress by 

t = SX. 

C ,  and C2 are empirical constants. Rearranging eq. 
( 6) gives 

where s* is the reduced force. A Mooney-Rivlin plot 
shows s* as a function of A-'. 

Work on vulcanized rubbers has shown Cl to be 
dependent on the degree of chemical crosslinking 
and C2 to be relatively independent.lO." C1 has been 
found to be independent of sovlent uptake whilst C2 
falls progressively" and may be a function of the 
effectiveness of molecular entanglements. However, 
the Mooney-Rivlin theory has no molecular basis 
and is generally considered to be unsatisfactory. 

Edwards-Vilgis Theory 

More recent work by S. F. Edwards and coworkers6 
has considered the effect of molecular entanglements 
and finite chain extensibility on the elasticity of 
crosslinked networks. These entanglements are 
modelled as sliplinks that are effectively a devel- 
opment of the well-established reptation concept. 
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Edwards and Vilgis derive the following expres- Table I Details of Spun Yarns 
sion for the free energy of the network6 

F 1  
wus T* An d 

Yarn (km/min) ("C) x 1000 (mm) 1 A 0.5 292 2.6 44.8 
+ In(1 - a2 C A:) 

X f ( 1  + q ) ( l -  a2) + I n ( l +  qXp) B 0.9 292 5.7 41.0 
C 1.5 292 10.7 37.5 
D 2.1 292 19.3 32.1 (1 + q X P ) ( l  - a 2 g )  
E 3.0 292 40.8 28.6 

+In(l-a2X:) , (8) F 3.7 292 61.8 27.1 1 H 4.6 292 95.3 24.8 

where N, and N, are the densities of permanent and 
temporary entanglements, respectively, (Y is an 
inextensibility parameter, and q is a measure of the 
mobility of the temporary entanglements (slip- 
links). The theoretical maximum draw ratio is given 
by 

A,,, = ly -l . (9)  

If q = 0, the sliplinks are fixed and will behave as 
permanent entanglements. An argument minimizing 
F leads to a value of q = 0.2343, which corresponds 
to each link being able to slide on average as far as 
the centre of its topologically neighbouring link.12 
In the case of uniaxial extension, the constant vol- 
ume condition is used 

2 3 

2 xf = A; + -, 
1 A3 

where X3 is the extensional draw ratio, and the force 
is calculated from 

+). T 

EXPERIMENTAL 

Sample Preparation 

The feedstock spun yarns were produced by melt 
spinning at  292°C and wound up at  eight speeds in 
the range 0.46-4.5 km/min. Further details of these 
spun yarns, referred to as A, B, etc., are given in 
Table I. The spun yarns A, B, C, E, F, and €I were 
drawn over a heated roller (the pin) at 85°C to pro- 
duce a series of drawn yarns for the shrinkage force 
measurements. It is important to note that there is 
appreciable crystallisation occurring at  the spinning 
stage in the case of yarns F and H. 

WUS, wind-up speed; T., spinning temperature; An birefrin- 
gence; d, diameter. 

Measurement of the Network Draw Ratio 

The network draw ratio for each sample was deter- 
mined by matching the true stress-strain curves of 
each drawn yarn with the lowest WUS precursor. 
The procedure follows that originally advocated by 
Brody l3 and described in detail in the previous pub- 
lication.' 

Shrinkage Force 

The apparatus used has been previously described 
by Capaccio and Ward.14 In summary, the test in- 
volves clamping a 6.5 cm length of yarn between two 
grips that are then lowered into a silicone oil bath 
maintained at  88°C. The retractive force that de- 
velops is transmitted to a strain gauge transducer 
and output saved on a chart recorder (Fig. 1 ) . 

Work by Perena et al.7 revealed the presence of 
a second maximum in the shrinkage force that arose 
in oriented samples some time after the peak 
shrinkage stress and was attributed to crystallisa- 
tion. This second peak has been observed during 
this study and as the sample orientation rises the 
separation of the two maxima is reduced. 

Free Shrinkage 

A 2 m Iength of yarn was immersed in hot silicone 
oil a t  100°C for 2 min. The yarn was then removed 
and the new sample length measured. The percent- 
age shrinkage was calculated using 

s=- ( lo  - x 100, 
lo 

where lo and Z1 are the original and shrunken sample 
lengths, respectively. 
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s* = kT[Nc  + N,H(q, A ) ]  (12a) 
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Figure 1 Shrinkage stress t as a function of time. 

Silicone oil was used as the heating medium for 
both the free shrinkage and shrinkage force mea- 
surements because of the reported plasticizing effect 
of water on  PET.^ 

Fitting Procedure 

Each spun yarn was considered a unique state that 
was subsequently extended in the drawing process. 
This unique network had developed by the spinline 
orientation process as winding speed increased.' The 
overall extension route of a particular spun yarn 
includes both the extension of the melt-spun net- 
work in the spinline up to the WUS of the yarn 
being considered and the hot drawing of that yarn. 
This will be illustrated by Mooney-Rivlin plots for 
the fitted networks. 

The Mooney-Rivlin coefficients C1 and C2 were 
found to be 73 kPa and 0.94 MPa, using results from 
all spun and drawn yarns. In the light of earlier 
work,lO,ll it seemed that C1 could be related to the 
crosslink density and C, is a function of the effec- 
tiveness of physical entanglements. Thus, the fol- 
lowing were used as starting values in the initial fit: 

c 2  and N =-  kT' 
c1 N, = - 
kT 

The procedure used is similar to that described 
by Brereton and Klein,I5 in which inputted values 
of nominal peak shrinkage stress and A,,, are fitted 
to the expression of Thirion and Weil": 

and H(r], A )  is given by 

\ 2  

] (12b) 
1 

[ ( A  + r])2 + A ( l + q A 2 ) 2  . X 

The work hardening that occurs at high strains 
was excluded from this initial fit. In the fitting pro- 
cedure and all other calculations presented here, we 
have used the network draw ratio as a measure of 
overall network extension, i.e., it has to be assumed 
that 

A,,, = A 

for all previous equations. (Note: Strictly C 2  should 
relate to both the density of slip links ( N , )  and the 
mobility of the links (7). ) 

A further program attempted to fit the whole de- 
formation range by introducing the inextensibility 
a. In an iterative process, the program adjusted the 
parameters N,, N,,  a, and r ]  to minimise the devia- 
tion. However, results showed that there was a fall 
in reduced force s *  at very high A,,, that the Ed- 
wards-Vilgis theory is unable to accommodate. Data 
from this region ( Anet > 4.6) was excluded from the 
fits. This fall has tentatively been associated with 

109 1 1  
t i: 60 

CJ a . 
c 

+ 

A X  + 
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m 

Figure 2 Shrinkage stress t vs. A:et - for precursors 
and pin-drawn yarns. M, A; 0, B; 0, C ;  A, D; A, E; X, F 
+, H. 
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Shrinkage stress t vs. birefringence An (sym- 

crystallisation, which may affect the development 
of retractive force in the amorphous phase. 

Results and Discussion 

Figure 2 shows the development of peak shrinkage 
stress with increasing Xnet and eq. ( 1) is valid for 
Xnet I 1.8. Above this value, the expected strain soft- 
ening is observed. The results for both the precursor 
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Figure 4 
spun (other symbols as in Fig. 2 ) .  
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c 

‘h 
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Figure 5 Free shrinkage vs. network draw ratio Anet. 
“Ideal” line represents ( 1 - s) -’ = A,,,. 0, as spun (other 
symbols as in Fig. 2 ) . 

and pin-drawn yarns lie about a common path until 
strain hardening occurs at  hnet > 3.5, i.e., ( X2 - A-’1 - 12. In this region, there is a clear rise in the rate 
of work-hardening with precursor WUS and as Xnet 
rises further there is a levelling off in the stress and 
for some drawn yarn networks a fall is seen. 

Figure 3 is similar in pattern to Figure 2. At low 
orientation, there is a constant stress-optical coef- 
ficient as predicted by the Kuhn-Grun theory, but 
deviation develops as birefringence rises above 

5 . 0 1 ” ’ ” ’ . ’ * I  

4.0 / +  

*- lJl 2.01 I“. 
0 

1 ’+’ t 
O’ 0 ‘ 0 ; ’  0.4 ’ ’  0.6 I ’  0.8 ” 1.0 ’ 

net-’ 

Figure 6 
shrinkage stress (symbols as in Fig. 2) .  

s * = s/ A,,, - A;:, vs. A;:,, where s = nominal 
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Figure 7 Fits of experimental data to Edwards-Vilgis 
theory. 0, spun precursors; m, pin-drawn yarns; -, fitted 
line. Figures denoted as ( i ) ,  ( i i ) ,  (iii) . . . (vii) show fits 
for series, A ,  B, C, D,  E, F, and H. 

0.025 and a separation of drawing response only 
arises at  An > 0.095 when the drawn yarns again 
fall onto curves determined by precursor WUS. 

Considering these results and those of Ward et 
al.,2,4,7 there is clear support for the existence of a 
classical rubberlike network in PET at low levels of 
molecular orientation. It was assumed in the pre- 
vious work that physical entanglements act like 
permanent crosslinks and there was no considera- 
tion of mobile entanglements or sliplinks. 

From eq. ( 1 )  it was found that the classical en- 
tanglement density N was 2.63 X mP3, which 
corresponds to a molecular weight between network 
junction points of 3,070 g mol-’. The good agree- 
ment with classical theory at  Xnet I 1.8 shows that 
the spinning and pin-drawing processes involve the 
affine deformation of an entanglement-based net- 
work. 

Analysis of Figure 3 using the stress-optical the- 
ory results in a value for the polarizability of the 
random link of 1.67 X lo2’ m-3, in good agreement 
with published  value^.',^ It is significant that the 
theory correctly predicts that the stress-optical con- 
stant is independent of variation in N. 

Figure 4 shows that eq. (5)  holds up to a bire- 
fringence of 0.020 although there is a slight sepa- 
ration between the precursors and the drawn yarns. 
As A n  increases, the shrinkages fall below the linear 
relationships, and following the maximum at A n  
= 0.040 there is a sharp fall to very low shrinkages. 
N was calculated using eq. (5) and was found to be 

0.89 X m-3, which is three times lower than 
that obtained from the variation of peak shrinkage 
stress with Xnet. 

In eq. (5) it was assumed that the Xnet = ( 1 - S) -’, 
but Figure 5 shows that even at low Let, when crys- 
tallinity has not intervened, the shrinkages are 
greater than expected, leading to the lower value of 
N. The reason for the shrinkage being greater than 
expected is not immediately apparent. At  low ori- 
entation, free shrinkage does not result in the neg- 
ative birefringences reported by Pinnock and Ward, 
precursors A to E retracting to the isotropic state. 
However, in a real network there will be a range of 
entanglement separations ( R )  and when heated to 
the rubberlike state the shortest chains in the ex- 
tended network will disorder first. This corresponds 
to the peak shrinkage stress shown in Figure 1. A t  
this stage, the longer network chains are not fully 
disordered and shrinkage continues until no further 
reduction in free energy is possible (for these low 
orientation amorphous yarns, possible crystallisa- 
tion effects have been neglected). Although free 
shrinkage is initially rapid, it is known to continue 
to increase with time.2 

The peak shrinkage force is due to the retraction 
of the shortest chains and it is these chains that are 
thought to control the load-bearing properties, par- 
ticularly tensile modulus.’ Free shrinkage, on the 
other hand, is due to the disordering of all the chains 
in the “biased” network. The small differences be- 
tween the low orientation precursor and pin-drawn 
yarns indicate a broader distribution of R in the as- 
spun material. 

Figures 2 and 3 have revealed that differences 
only develop between the precursor yarn networks 
in the work-hardening region. The sliplink model of 
Edwards and Vilgis has been used to investigate dif- 
ferences between these networks. 

The Mooney-Rivlin plot (Fig. 6 )  represents the 
Gaussian region by a line of zero slope. As Xnet rises 
above 1.8, strain-softening is observed, followed by 
the typical sharp upturn in the reduced force s* due 
to work-hardening. There is, however, an unex- 
pected fall in s* at Xnet 2 4.6 for networks C, D, E ,  
F ,  and H and a possible levelling-off for networks 
A and B .  This fall may be due to crystallization, 
which will produce a significant amount of extended 
chain crystals in the high-WUS networks. These 
crystals may act as a link between other crystallites 
and hinder shrinkage. 

Figure 7 shows the Edward-Vilgis theory fits to 
the individual networks. Overall, this theory, which 
does not consider the Gaussian region by assuming 
that there is no barrier to the motion of the slip- 
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links, provides a reasonable fit in the range 4.6 < A,,, 
< 1.8. 

It is useful to consider the individual fits in some 
detail. Yarn drawn from feedstock A initially obeys 
the classical theory and as An,, rises there is pro- 
nounced strain-softening followed by the charac- 
teristic upturn. The fit to this network is relatively 
poor given the sharp change in slope following the 
Gaussian region. 

As the precursor orientation rises, there is a de- 
crease in the gradient of the srain-softening region 
and an improvement in the quality of the fits, al- 
though at the highest WUS (network H )  the upturn 
due to strain-hardening does not seem to be modelled 
especially well. These fits, which have included the 
low A,,, data, are thus a compromise between the 
classical network theory and the sliplink-based de- 
scription of strain-softening. 

The sliplink theory, which allows the molecular 
entanglements to be mobile a t  low strains, has not 
considered the successful application of classical 
theory to noncrosslinked systems in which the en- 
tanglements are fixed at low A,,,. The fitted values 
of N, shown in Table I1 are of the same order as N 
[ from eq. ( l ) ]  , supporting the proposal that the 
classical network is entanglement based. Strain- 
softening behaviour is well modelled by the Ed- 
wards-Vilgis theory and arises when the entangle- 
ments overcome an energy barrier. There is thus a 
flow stress associated with the motion of the sli- 
plinks. The sliplink theory, in common with other 
rubber elasticity models, does not consider the effect 
of internal energy changes. In PET, this internal 
energy effect is apparent even at relatively low 
strains in a change from the gauche to trans con- 
formation of the ethylene glycol residue. 

The fitted parameters are given in Table 11. They 
show that, as expected, the networks are dominated 

Table I1 
Molecular Networks 

Characterization of the Entangled 

~ ~ 

- .  

A 0.08 2.27 0.06 0.151 6.63 6.32 
B 0.08 1.86 0.01 0.147 6.80 5.91 
C 0.02 2.28 0.07 0.175 5.72 5.92 
D 0.00 3.37 0.32 0.184 5.43 5.88 
E 0.00 3.06 0.35 0.198 5.06 6.17 
F 0.61 3.31 0.62 0.176 5.68 5.96 
H 0.31 2.48 0.26 0.182 5.49 5.99 

A, is the experimental maximum draw ratio and Am,,= is the 
theoretical maximum found from the fit. N, and N, are given in 
units of m-3. 

by sliplinks that are very stiff for the low-WUS net- 
works ( A ,  B ,  and C) . As the feedstock orientation 
rises further, there is a rise in N, and in the mobility 
parameter 7. Thus, network D, E ,  F ,  and H contain 
more sliplinks but conversely these links are more 
mobile. Significantly, the results show a very low 
value of N, except for the highest orientation net- 
works F and H ,  where the influence of spin-line 
crystallization is apparent. However, it is worth re- 
calling that the greatest strain-softening was ob- 
served for the low-WUS networks and these fits are 
less reliable than for the high-WUS networks. 

The gradual rise in 7 is of importance since it 
may relate to a decrease in amorphous region ori- 
entation that accompanies crystallization during 
spinning and drawing. This may reflect the increas- 
ingly biased nature of the pin-drawn networks as 
WUS rises, as discussed previously.' 

The experimental maximum draw ratio At is rel- 
atively constant at about 6.0 and with the exception 
of networks A and B ,  the predicted values (A,,,) 
are lower and more variable. The theory is not able 
to provide precise values of maximum extensibility 
since it does not model the very high A,,, falloff in 
reduced force. 

CONCLUSIONS 

In light of this study and earlier investigations of 
the rubberlike behaviour of PET, it is clear that the 
classical network is due to the effect of molecular 
entanglements that are immobile at Anet I 1.8. These 
entanglements have an energy barrier associated 
with their motion that is related to conformational 
changes within the ethylene glycol residue. The Ed- 
wards-Vilgis theory does not accommodate this and 
other internal energy effects, such as crystallization, 
and is unable to model the classical region. 

The Edwards-Vilgis theory is able to model the 
data well in the range 4.6 < A,,, < 1.8. As A,,, rises 
above 4.6, there is a clear drop in reduced shrinkage 
force that the theory cannot accommodate. This 
high A,,, deviation may be due to the crystallinity 
becoming continuous and hindering the develop- 
ment of shrinkage force. 

In conclusion, the rubberlike elasticity of PET 
can be considered in terms of two regimes: the low- 
strain Gaussian region, and following the strain-in- 
duced activation of the sliplinks the Edward-Vilgis 
provides a good description for A,,, < 4.6. 

The discrepancy between estimated values of the 
classical entanglement density is due to the differing 
origins of shrinkage force and free shrinkage. Peak 
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shrinkage force has been associated with the me- 
chanically important shortest chains, whilst free 
shrinkage is due to the disordering of all chains in 
the biased network. 
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